

Ressourceneffizienz durch Industrie 4.0:

Potenziale für KMU des verarbeitenden Gewerbes

Tom Buchert VDI Zentrum Ressourceneffizienz GmbH

Ressourceneffizienz und Kreislaufwirtschaft zahlen sich aus!

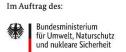
Innsbruck, 13.06.2019

VDI Zentrum Ressourceneffizienz (VDI ZRE)

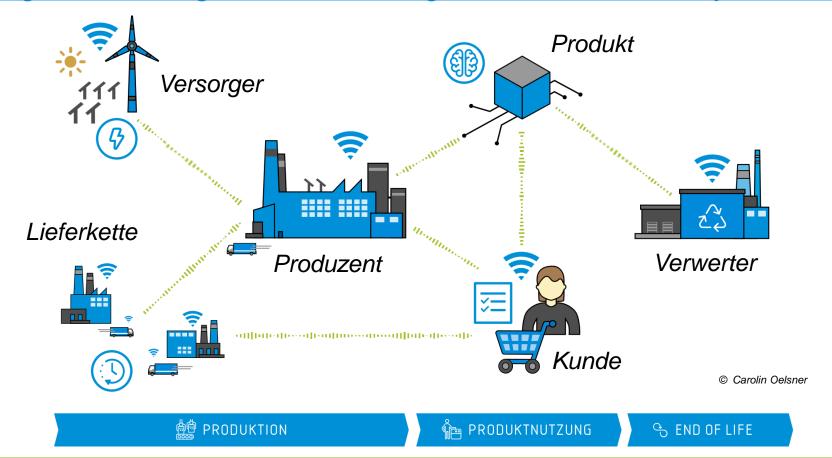
- Fokus auf Ressourceneffizienz in der betrieblichen Praxis durch Anbindung an den VDI (Gründung 2009)
- Kompetenzzentrum für bedarfsgerechte Aufbereitung von technischem RE-Wissen für KMU im Auftrag des BMU
- Setzung von Standards durch Entwicklung von VDI-Richtlinien zur Ressourceneffizienz in Zusammenarbeit mit dem VDI e. V.

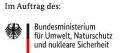
Fotos: VDI ZRE Web Videomagazin

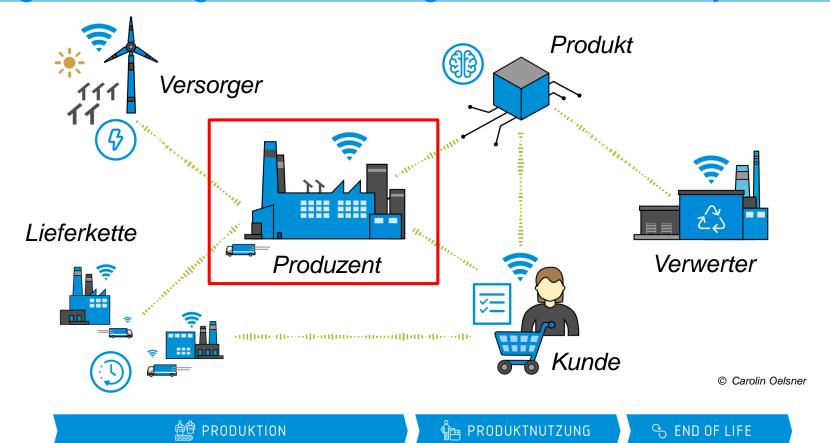
VDI ZRE - Produkte und Schwerpunkte



Digitalisierung in der Produktion – Mögliche Effekte

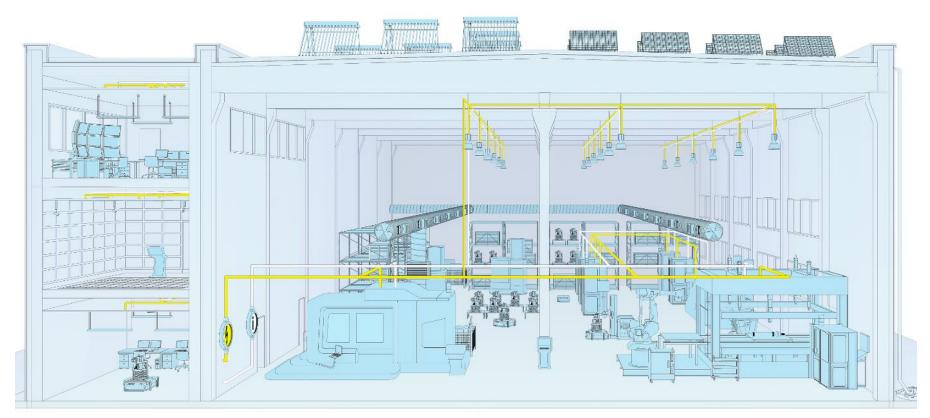

- Wirtschaftliche Effekte (nach WGP Standpunktpapier 4.0):
 - Senkung von Bestandskosten (bis zu 40%), Fertigungs- und Logistikkosten (10 - 30%), Komplexitätskosten (bis zu 70%)
 - Steigerung der Produktivität (bis zu 50 %)
- Sonstige Effekte im Kontext Ressourceneffizienz (Ergebnis Befragung)
 - Vermeidung von Materialeinsatz
 - Verringerung von Abfall
 - Einsparung von elektrischer Energie
 - Einsparung von Transporten und Lagerraum


Quelle: Wissenschaftliche Gesellschaft für Produktionstechnik WGP e.V. (Hrsg.) "WGP-Standpunkt Industrie 4.0


Big Picture: Digitale Vernetzung im Produktlebenszyklus

Big Picture: Digitale Vernetzung im Produktlebenszyklus

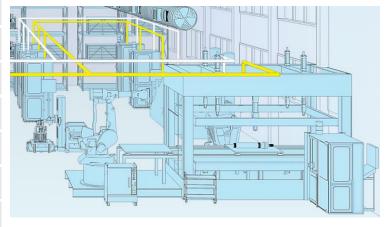
Die digitalisierte Fabrik



© Archlab

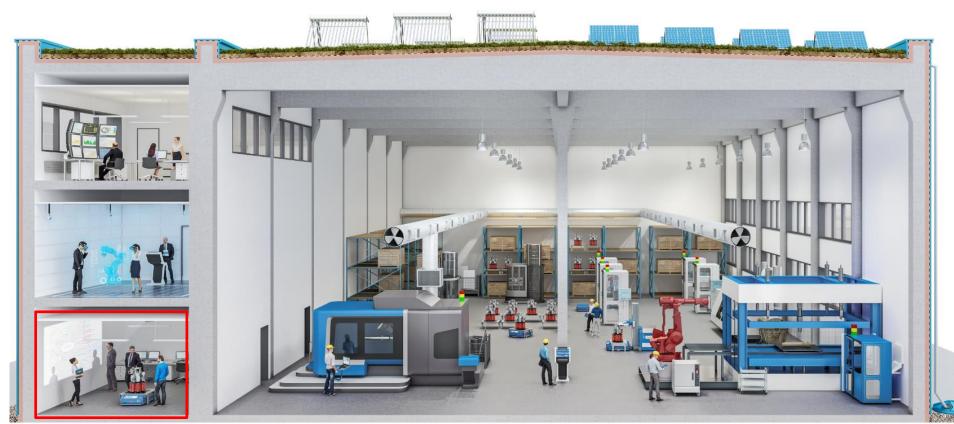
Die digitalisierte Fabrik – Digitaler Fabrikzwilling

© Archlab



Maßnahmen der Digitalisierung

M1	Vernetzung von Sensoren und Aktoren
M2	Einsatz Digitaler Objektgedächtnisse
M3	Dezentrale Steuerung
M4	Werkerunterstützung und Assistenz
M5	Dynamisch kooperierende Systeme und Modularisierung
M6	Einsatz von Ortungs- und Lokalisierungssystemen
M7	Zustandsüberwachung
M8	Prädikative Wartung
M9	Durchgängige Datenintegration
M10	Virtuelle Produktentwicklung
M11	Cloud Computing


© Archlab

Die digitalisierte Fabrik – Potenziale und Beispiele

© Archlab

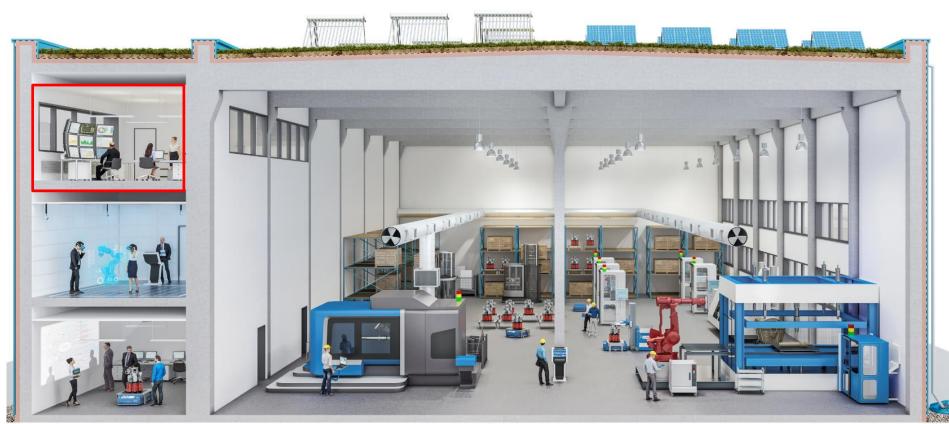
Virtuelle Produktentwicklung - Potenziale

- Nutzung von virtuellen Prototypen,
 Modellen und Simulationstechniken
 - Einsparung von Prototypen
 - Senkung von Produktionskosten (z. B. Materialeinsparungen durch Topologieoptimierung)
 - Verbesserung von Nutzungseigenschaften (z. B. Haltbarkeit)
- Wissensbasierte Konstruktion
 - Weniger Fehler und Zeitaufwand
- Datengetriebene Produkt-Service Systeme
 - Neue effiziente Geschäftsmodelle

© Archlab

Beispiel: Digitale Produkt-Service Systeme

- BHS Corrugated Maschinen- und Anlagenbau GmbH : Entwicklung und Herstellung von Wellpappanlagen
- Ausgangssituation: Suche nach Geschäftsmodellen zusätzlich zum Verkauf von Maschinen und Wartung.
- Lösungsansatz:
 - Industrial-Internet-of-Things-Plattform erlaubt cloudbasierte Erfassung der Betriebsdaten verkaufter Maschinen
 - Analyse von Fragestellungen mit hohem Kundennutzen möglich (insb. prädiktive Instandhaltung)
- Einspareffekt
 - Längere Lebensdauer der Maschine, geringere Wartungskosten, weniger Ausfälle


Quelle: Wrobel; M.; Nicolai und A. T. (2019): Digitale Innovation im Mittelstand – Fallbeispiele erfolgreicher Digitalisierungsprojekte.

Im Auftrag des:

Die digitalisierte Fabrik - Potenziale und Beispiele

© Archlab

Digitale Fabrik-/Produktionsplanung - Potenziale

- Ermittlung optimaler Fabriklayouts
 - Verringerung des Aufwandes für Logistik
- Automatisierung von Planungsschritten (z. B. Kunde löst automatisch Produktionsauftrag aus)
 - geringere Materialbestände und Durchlaufzeiten
- Simulation von Material- und Energieflüssen in der Digitalen Fabrik
 - Identifikation ineffizienter Prozesse
- Virtuelle Absicherung der Fertigung
 - Vermeidung von Verschnitt und Ausschüssen

© Archlab

Beispiel - One Piece Flow

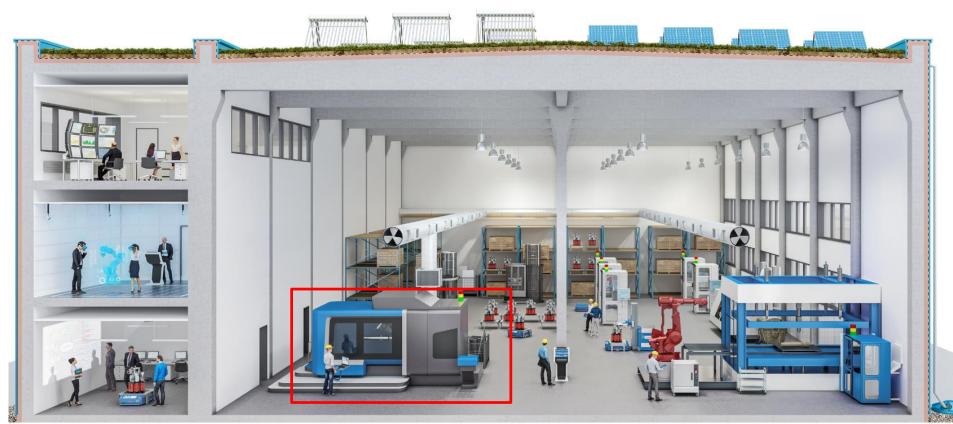
- J. Schmalz GmbH: Anbieter von Vakuum-Systemen für Automatisierungs- Handhabungs- und Aufspanntechnik
- Ausgangssituation: Qualitätsprobleme durch massenhafte Lagerung von Schaumteilen bis zum Kundenauftrag
- Lösungsansatz:
 - Auftragsauslösung durch individualisierte Kundenbestellung
 - Automatische Übertragung von Formbildern für Schaumteile mittels CAD-Dateien an Fertigung
 - Lagerung der Schaumteile entfällt
- Einspareffekt:
 - Bis 25 % Abfall, 50 bis 75 % Fehlerrate, Bis 25 % Transport, Lagerraum

© VDI ZRE

Beispiel - FoamCreator

- Wetropa Kunststoffverarbeitung GmbH & Co: Herstellung von Schaumstoffeinlagen für Werkzeuge oder Bauteile
- Ausgangssituation: Digitalisierung von Werkzeugen und Entwurf des Schaumstoffträgers erfolgte unter erheblichem Transport- und Abstimmungsaufwand
- Lösungsansatz:
 - App zur Erfassung von Werkzeugen mittels Smartphone durch den Kunden
 - Online-Services zum Entwurf eines Schaumstoffträgers durch den Kunden
- Einspareffekt:
 - 25 % Material, 33 % Transport

© Wetropa Kunststoffverarbeitung GmbH & Co



Die digitalisierte Fabrik – Potenziale und Beispiele

© Archlab

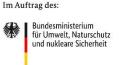
Intelligente Produktion und Logistik - Potenziale

- Verbesserte Abläufe durch
 Selbstorganisation von Maschinen
 - verringerte Material-, Zeit- und Energieaufwände
- Verbessertes Qualitätsmanagement durch automatische Fehlerkorrektur
 - Verringerte Ausschüsse
- Verbesserte Wartung durch Condition
 Monitoring und Predictive Maintenance
 - Längere Haltbarkeit der Maschinen, bessere Verfügbarkeit
- Intelligente Gebäudetechnik
 - Senkung Energieverbrauch

© Archlab

Beispiel: Energieflexible Warenlager

- Blechwarenfabrik Limburg GmbH: Produzent von Metallverpackungen
- Ausgangssituation: Suche nach Möglichkeiten der effizienten Verwendung von Solarenergie
- Lösungsansatz:
 - Ein automatisches Warenlager führt zeitunkritische Lagerbewegungen dann aus, wenn die Sonne scheint.



© VDI ZRE

■ Einspareffekt:

Weniger Strom muss extern eingekauft werden

Fazit

- Unternehmen stehen am Anfang der Digitalisierung
- Ressourceneffizienz ist (bisher) keine Motivation für Digitalisierung
- Digitalisierung der Industrie trägt zur Einsparung von Ressourcen bei
- Ressourceneinsatz der Digitalisierung kann die erreichten Einsparungen auch übersteigen
- Ressourcenverbräuche sind inner- und außerbetrieblich weitestgehend unbekannt
- → Ressourceneffizienz sollte bei der Digitalisierung von Anfang an einbezogen werden

Angebote im Kontext Digitalisierung

Mehr Infos unter: www.ressource-deutschland.de

- Studie: Ressourceneffizienz durch Industrie 4.0 Potenziale für KMU des verarbeitenden Gewerbes
- Kurzanalyse: Material- und Energieeffizienzpotenziale durch den Einsatz von Fertigungsdatenerfassung und –verarbeitung
- Ressourcencheck: Selbsteinschätzung bzgl. derzeit adressierter Ressourceneffizienzpotenziale durch Digitalisierung
- Visualisierung: Interaktive Darstellung bester verfügbarer
 Techniken, Projekte und Beispiele im Bezug zu Digitalisierung
- Filme: 3 Filme zum Thema
- Qualifizierung: Lernfabrik Ressourceneffizienz durch Digitalisierung

Kontakt

VDI Zentrum Ressourceneffizienz GmbH Bertolt-Brecht-Platz 3 10117 Berlin

Tom Buchert

Tel.: +49 30 27 59 506-16

Fax: +49 30 27 59 506-30

buchert@vdi.de

www.vdi-zre.de www.ressource-deutschland.de